Preliminary Study as Temperature Sensor of Nanosilica Based on Coastal and River Sand

  • Lalu Ahmad Didik Meiliyadi Universitas Islam Negeri Mataram
  • Muh. Wahyudi Universitas Islam Negeri Mataram
  • Kurniawan Arizona Universitas Islam Negeri Mataram
Keywords: Iron sand, Magnetic mineral, Nanosilica, Sol gel, Temperature sensor.

Abstract

The synthesis of nano-silica gel based on magnetic minerals from the coastal sand and river sand of Lombok Island has been carried out. The synthesis method used is sol-gel with HCl acid and NH4OH base. The results showed that nano-silica based on coastal sand has a greater silica content than nanosilica based on river sand. The morphology of nanosilica based on coastal is granular with a smaller grain size of nanosilica based on coastal sand compared to nanosilica based on river sand. To a temperature sensor, nano-silica based on coastal sand has a larger coefficient when compared to nanosilica based on river sand. This indicates that nano-silica based on coastal sand has better physical properties as a temperature sensor than nanosilica based on river sand.

Downloads

Download data is not yet available.

References

[1] L. A. D. Meiliyadi, M. Wahyudi, I. Damayanti, and A. Fudholi, “Morphological characteristics and electrical properties analysis of silica based on river and coastal iron sand,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 11, no. 1, pp. 129–140, 2022, doi: 10.24042/jipfalbiruni.v11i1.12390.
[2] F. Ningsih;, Fitrianingsih;, and L. A. Didik, “Analisis Pengaruh Lama Penggerusan terhadap Resistivitas dan Konstanta Dielektrik pada Pasir Besi yang disintesis dari Kabupaten Bima,” Indones. Phys. Rev., vol. 2, no. 3, pp. 92–98, 2019, doi: 10.29303/ipr.v2i3.31.
[3] C. M. Marik et al., “The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation,” Environ. Res., vol. 173, no. February, pp. 33–39, 2019, doi: 10.1016/j.envres.2019.02.028.
[4] B. Satria, Z. M. Silvia, and J. Fajar, “Magnetic susceptibility and grain size distribution as prospective tools for selective exploration and provenance study of iron sand deposits: A case study from Aceh, Indonesia,” Heliyon, vol. 7, p. e08584, 2021, doi: 10.1016/j.heliyon.2021.e08584.
[5] L. A. D. Meiliyadi, M. Wahyudi, K. Arizona, and Z. A. Zain, “Synthesis of Nanosilica Gel Based on River Sand and Its Use as Water Treatment,” J. Mater. Environ. Sci., vol. 14, no. 11, pp. 1204–1213, 2023.
[6] L. A. Didik and M. Wahyudi, “Analisa Kandungan Fe dan Karakteristik Sifat Listrik Pasir Besi Pantai Telindung yang Disintesis Dengan Beberapa Metode,” Indones. Phys. Rev., vol. 3, no. 2, pp. 64–71, 2020, doi: 10.29303/i pr.v3i2.58.
[7] R. Gannoun, J. M. P. Ebrí, A. T. Pérez, M. J. Espín, F. J. Durán-Olivencia, and J. M. Valverde, “Nanosilica to improve the flowability of fine limestone powders in thermochemical storage units,” Chem. Eng. J., vol. 426, p. 131789, 2021, doi: 10.1016/j.cej.2021.131789.
[8] G. Fan, M. Li, X. Chen, A. Palyanitsina, and A. Timoshin, “Polymer-Nanosilica-assisted to evaluate oil recovery performances in sandstone reservoirs,” Energy Reports, vol. 7, pp. 2588–2593, 2021, doi: 10.1016/j.egyr.2021.04.047.
[9] S. Azizi and N. Shadjou, “Iron oxide (Fe3O4) magnetic nanoparticles supported on wrinkled fibrous nanosilica (WFNS) functionalized by biimidazole ionic liquid as an effective and reusable heterogeneous magnetic nanocatalyst for the efficient synthesis of N-sulfonylamidines,” Heliyon, vol. 7, p. e05915, 2021, doi: 10.1016/j.heliyon.2021.e05915.
[10] Z. Xantini and E. Erasmus, “Platinum supported on nanosilica and fibrous nanosilica for hydrogenation reactions,” Polyhedron, vol. 193, p. 114769, 2021, doi: 10.1016/j.poly.2020.114769.
[11] P. Dileep, S. Jacob, and S. K. Narayanankutty, “Functionalized nanosilica as an antimicrobial additive for waterborne paints,” Prog. Org. Coatings, vol. 142, p. 105574, 2020, doi: 10.1016/j.porgcoat.2020.105574.
[12] Fernández-Fernández, Á. C. M., and M. M., “Molecular simulation of methane hydrate growth confined into a silica pore,” J. Mol. Liq., vol. 362, p. 119698, 2022, doi: 10.1016/j.molliq.2022.119698.
[13] Y. Liu, J. Liu, Z. Wang, Y. Yuan, J. Hua, and K. Liu, “Robust and durable superhydrophobic and oil-absorbent silica particles with ultrahigh separation efficiency and recyclability,” Microporous Mesoporous Mater., vol. 335, p. 111772, 2022, doi: 10.1016/j.micromeso.2022.111772.
[14] K. Luo et al., “Hydrophobic and hydrophilic selectivity of a multifunctional carbonyldiimidazolium/dodecyl modified silica stationary phase,” J. Chromatogr. A, vol. 1677, p. 463300, 2022, doi: 10.1016/j.chroma.2022.463300.
[15] Y. Cheng and L. Zheng, “Engineering silica encapsulated composite of acyltransferase from Mycobacterium smegmatis and MIL-88A: A stability-and activity-improved biocatalyst for N-acylation reactions in water,” Colloids Surfaces B Biointerfaces, vol. 217, p. 112690, 2022, doi: 10.1016/j.colsurfb.2022.112690.
[16] Z. Dong, X. Jin, and G. Zhao, “Amplified QCM biosensor for type IV collagenase based on collagenase- cleavage of gold nanoparticles functionalized peptide,” Biosens. Bioelectron., vol. 106, no. November 2017, pp. 111–116, 2018, doi: 10.1016/j.bios.2018.01.069.
[17] F. Zhao et al., “Energy storage performance of silicon-integrated epitaxial lead-free BaTiO3-based capacitor,” Chem. Eng. J., vol. 450, no. 3, p. 138312, 2022, doi: 10.1016/j.cej.2022.138312.
[18] P. Pal, H. Li, and S. Saravanamurugan, “Removal of lignin and silica from rice straw for enhanced accessibility of holocellulose for the production of high-value chemicals,” Bioresour. Technol., vol. 361, p. 127661, 2022, doi: 10.1016/j.biortech.2022.127661.
[19] K. Vopel, C. Pook, P. Wilson, and J. Robertson, “Offshore iron sand extraction in New Zealand: Potential trace metal exposure of benthic and pelagic biota,” Mar. Pollut. Bull., vol. 123, no. 1–2, pp. 324–328, 2017, doi: 10.1016/j.marpolbul.2017.09.018.
[20] L. A. Didik, Yahdi, and Masruroh, “Improvement QCM Quality by Polystirene Coating and Bovine Serum Albumin as Immobilization Agent,” Al-Biruni, vol. 08, no. 1, pp. 35–41, 2019, doi: 10.24042/jipfalbiruni.v8i1.3716.
[21] V. Kumar, R. Adalati, Y. K. Gautam, and D. Gautam, “An investigation of glass, ITO, and quartz transparent substrates on Pd/SnO2 hydrogen sensor structure and sensitivity,” Mater. Today Commun., vol. 5, p. 109280, 2024, doi: 10.1016/j.mtcomm.2024.109280.
[22] F. N. Dultsev and D. V Nekrasov, “Treatment of the resonance curve recorded during measurement of the signal of particle rupture from the QCM surface,” Sensors Actuators B. Chem., 2018, doi: 10.1016/j.snb.2018.04.029.
[23] H. Kiyomoto, Y. Sakai, and Y. Kansha, “Evaluation of isothermal and isofield designs of a temperature sensor using magnetic phase transition,” Therm. Sci. Eng. Prog., vol. 50, p. 102597, 2024, doi: 10.1016/j.tsep.2024.102597.
[24] J. Ban et al., “Highly sensitive stretchable fiber-based temperature sensor enhanced by surface-chemically modified silver nanowires,” Chem. Eng. J., vol. 482, p. 148772, 2024, doi: 10.1016/j.cej.2024.148772.
[25] W. C. Zheng, D. X. Zheng, Y. C. Wang, D. Li, C. Jin, and H. L. Bai, “Flexible Fe 3 O 4 /BiFeO 3 multiferroic heterostructures with uniaxial strain control of exchange bias,” J. Magn. Magn. Mater., vol. 481, pp. 227–233, 2019, doi: 10.1016/j.jmmm.2019.02.068.
[26] A. Ananda and S. Aini, “Sintesis Silika Mesopori Menggunakan Bahan Dasar Na2SiO3 yang Dihasilkan dari Pasir Silika dengan Metoda Sol-Gel,” Periodic, vol. 10, no. 1, pp. 37–39, 2021, doi: 10.24036/p.v10i1.110482.
[27] Bramantya, L. P. Yonando, M. Rifaldi, and R. Oktavian, “Sintesis dan Karakterisasi Silika Aerogel Hidrofobik dan Oliofilik Dari Pasir Laut Sebagai Absorben Tumpahan Minyak,” J. Tek. Kim. dan Lingkung., vol. 2, no. 2, pp. 49–54, 2018, doi: 10.25077/jfu.10.3.296-302.2021.
[28] K. D. Gautam and A. V Ullas, “Effect of Stirring Speed on the Morphology of Nanosilica by Sol-Gel method,” Mater. Today Proc., vol. 74, no. 4, pp. 713–717, 2023, doi: 10.1016/j.matpr.2022.10.281.
[29] M. A. Zayed, N. G. Imam, M. A. Ahmed, and D. H. El Sherbiny, “Spectrophotometric analysis of hematite/magnetite nanocomposites in comparison with EDX and XRF techniques,” J. Mol. Liq., vol. 211, pp. 288–295, 2017, doi: http://dx.doi.org/10.1016/j.molliq.2017.02.007.
[30] M. R. Fahlepy, V. A. Tiwow, and Subaer, “Characterization of magnetite (Fe 3 O 4 ) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application,” J. Phys. Conf. Ser., vol. 997, no. 1, 2018, doi: 10.1088/1742-6596/997/1/012036.
[31] L. A. Didik, I. Damayanti, J. Jumliati, and P. D. Alfadia Lestari, “Morphological Characteristics and Mineral Content Analysis of Magnetic Minerals Based on River and Coastal Sand using SEM-EDX,” J. Sains Dasar, vol. 10, no. 2, pp. 44–50, 2021, doi: 10.21831/jsd.v10i2.42217.
[32] E. Sukirman, Y. Sarwanto, A. Insani, M. Th Rina, and A. Purwanto, “Magnetic Structure of Magnetite Phase of Iron Sand Retrieved from Banten, Indonesia,” J. Phys. Conf. Ser., vol. 1091, no. 1, 2018, doi: 10.1088/1742-6596/1091/1/012007.
[33] F. Malega, I. P. T. Indrayana, and E. Suharyadi, “Synthesis and Characterization of the Microstructure and Functional Group Bond of Fe3o4 Nanoparticles from Natural Iron Sand in Tobelo North Halmahera,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 7, no. 2, p. 129, 2018, doi: 10.24042/jipfalbiruni.v7i2.2913.
[34] P. Sebayang et al., “Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials,” IOP Conf. Ser. Mater. Sci. Eng., vol. 316, no. 1, 2018, doi: 10.1088/1757-899X/316/1/012053.
[35] C. Kurniawan et al., “Synthesis and Characterization of Magnetic Elastomer based PEG-Coated Fe3O4 from Natural Iron Sand,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, 2017, doi: 10.1088/1757-899X/202/1/012051.
[36] S. Sumari, M. R. Asrori, Y. F. Prakasa, D. R. Baharintasari, and A. Santoso, “Silica extract from Malang beach sand via leaching and sol-gel methods,” Int. J. Adv. Appl. Sci., vol. 12, no. 1, p. 74, 2023, doi: 10.11591/ijaas.v12.i1.pp74-81.
[37] N. M. Tran, Y. Nam, and H. Yoo, “Fabrication of dendritic fibrous silica nanolayer on optimized water-glass-based synthetic nanosilica from rice husk ash,” Ceram. Int., vol. 48, no. 21, pp. 32409–32417, 2022, doi: 10.1016/j.ceramint.2022.07.184.
[38] L. A. Didik and Muh. Wahyudi, “Crystal Structure Analysis of CuCrO2 Based On XRD Data Using GSAS Software,” Indones. Phys. Rev., vol. 4, no. 1, pp. 10–17, 2021, doi: https://doi.org/10.29303/ipr.v4i1.73.
[39] L. A. Didik, E. Rahmawati, F. Robiandi, S. Rahayu, and D. J. D. H. Santjojo, “Penentuan Ketebalan Lapisan Polistiren dan Zinc Phthalocyanine ( ZnPc ) dengan Modifikasi Persamaan Sauerbrey dan Scanning Electron Microscope ( SEM ),” Nat. B, vol. 2, no. 4, pp. 331–335, 2014, doi: 10.21776/ub.natural-b.2014.002.04.6.
[40] E. A. Setiadi et al., “The effect of temperature on synthesis of MgFe2O4 based on natural iron sand by Co-precipitation method as adsorbent Pb ion,” J. Phys. Conf. Ser., vol. 985, no. 1, 2018, doi: 10.1088/1742-6596/985/1/012046.
[41] M. Rianna et al., “Characterization of Natural Iron Sand From Kata Beach, West Sumatra With High Energy Milling (Hem),” J. Nat., vol. 18, no. 2, pp. 97–100, 2018, doi: 10.24815/jn.v18i2.11163.
[42] W. Elyani, A. Hidayat, A. Taufiq, and Sunaryono, “Sintesis Kromium Ferit dari Pasir Pantai dan Karakterisasi Awal Sensor Suhu,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 1, pp. 1–7, 2018, doi: 10.17977/um024v3i12018p001.
Published
2025-01-23
How to Cite
Meiliyadi, L. A. D., Wahyudi, M., & Arizona, K. (2025). Preliminary Study as Temperature Sensor of Nanosilica Based on Coastal and River Sand. KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA, 9(02), 170-179. https://doi.org/https://doi.org/10.20414/konstan.v9i02.594